Labeled Trees, Functions, and an Algebraic Identity
نویسندگان
چکیده
منابع مشابه
Labeled Trees, Functions, and an Algebraic Identity
We give a short and direct proof of a remarkable identity that arises in the enumeration of labeled trees with respect to their indegree sequence, where all edges are oriented from the vertex with lower label towards the vertex with higher label. This solves a problem posed by Shin and Zeng in a recent article. We also provide a generalization of this identity that translates to a formula for t...
متن کاملGenerating functions for multi-labeled trees
Multi-labeled trees are a generalization of phylogenetic trees that are used, for example, in the study of gene versus species evolution and as the basis for phylogenetic network construction. Unlike phylogenetic trees, in a leaf-multi-labeled tree it is possible to label more than one leaf by the same element of the underlying label set. In this paper we derive formulae for generating function...
متن کاملParking Functions, Labeled Trees and DCJ Sorting Scenarios
In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios, and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) ...
متن کاملA Combinatorial Proof of Postnikov's Identity and a Generalized Enumeration of Labeled Trees
In this paper, we give a simple combinatorial explanation of a formula of A. Postnikov relating bicolored rooted trees to bicolored binary trees. We also present generalized formulas for the number of labeled k-ary trees, rooted labeled trees, and labeled plane trees.
متن کاملLabeled Binary Planar Trees
We study the natural map η between a group of binary planar trees whose leaves are labeled by elements of a free abelian group H and a certain group D(H) derived from the free Lie algebra over H. Both of these groups arise in several different topological contexts. η is known to be an isomorphism over Q, but not over Z. We determine its cokernel and attack the conjecture that it is injective.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2011
ISSN: 1077-8926
DOI: 10.37236/675